The limit of layers in black phosphorous

In the 2D "flatlands", graphene stands tall as the most exciting discovery for future technologies. Despite its many attractive properties however, graphene lacks a natural band gap that would allow electrical flow to be switched on and off (it is a zero gap semiconductor). Luckily the physical realisation of graphene has led to an explosion of interest in other 2D and/or layered (nano)materials for specific applicaitions. For example the elemental allotropes silicene, germanene or stanene, transition metal dichalcogenides such as molybdenum disulfide, metal oxides such as vanadium oxide, and metal-free layered materials such as hexagonal boron nitride, all display a vast array of different

Recent Posts
Archive
Search By Tags
 
Andrew Cairns | Department of Materials, Imperial College London
a.cairns [at] imperial.ac.uk | +44 (0)20 7594 9528